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Introduction

This paper will explain several methods for calculating the square roots of positive real numbers
and prove that the results of the algorithms converge to the square root.
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1 Greek Method

∀ a ∈ Q such that a > 1, the sequences {an} and {bn} both converge to
√
a when de�ned as:

ai = a
bi = 1
an+1 = an+bn

2

bn+1 = 2anbn
an+bn

1.1 The Product is Always a

∀n ∈ N, anbn = a

Base Case for Proof by Induction

n = 1:

a1b1 = a× 1 = a

Induction Step

Assume akbk = a, then

ak+1bk+1 =

(
ak + bk

2

)(
2akbk
ak + bk

)
= akbk = a

1.2 an is Always Greater Than bn

∀n ∈ N,an ≥ bn

Base Case for Induction

n = 1:

a1 = a > b1 = 1

Induction Step

Assume ak > bk, then

(ak − bk)2 > 0

a2k − 2akbk + b2k > 0

a2k + 2akbk + b2k > 4akbk

(ak + bk)
2
> 4abk

ak + bk
2

>
2akbk
ak + bk

ak+1 > bk+1
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1.3 {an} are {bn} Monotone

{an} is Strictly Decreasing

Since an > bn ∀n ∈ N:

an > bn

2an > an + bn

an >
an + bn

2

an > an+1

{bn} is Strictly Increasing

Since an > bn ∀n ∈ N:

bn < an

b2n < anbn

anbn + b2n < 2anbn

bn (an + bn) < 2anbn

bn <
2anbn
an + bn

bn < bn+1

1.4 {an} and {bn} are Cauchy
We know an > bn and anbn = a, so:

an > bn

an >
a

an

a2n > a

an >
√
a

Similarly, bn<
√
a for all n. Thus {an} is monotone decreasing and bounded below and{bn} is

monotone increasing and bounded above. Both sequences must be Cauchy, and since R is complete,
both sequences must converge.
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1.5 {an} and {bn} Converge to
√
a

{a2n} Converges to a

Since {an} is a Cauchy sequence, ∀ ε > 0, ∃N1 ∈ N such that ∀n,m > N1, |an − am| < 1
2aε. Also,

{an} is strictly decreasing, so if m > n, am < an and therefore |an − am| = an − am. From this:

1

2a
ε > an − an+1

1

2a
ε > an −

an + bn
2

1

2a
ε >

2an
2
−
an + a

an

2

1

2a
ε >

a
an
− an
2

ε > a

(
a

an
− an

)
ε >

a

an

(
a− a2n

)
lim
n→∞

a2n = a

{b2n} Converges to a

Since {bn} is a Cauchy sequence, ∀ ε > 0, ∃ N2 ∈ N such that ∀n,m > N2, |bn − bm| < ε. Also,
{bn} is strictly increasing, so if m > n, bm > bn and therefore |bn − bm| = bm − bn. From this:

ε > bn+1 − bn

ε >
2anbn
an + bn

− bn

ε >
2 a
bn
bn

a
bn

+ bn
− bn

ε >
2abn
a+ b2n

−
(
a+ b2n

)
bn

a+ b2n

ε >

(
a− b2n

)
bn

a+ b2n

Since bn is increasing and bounded above, it does not converge to zero nor does b2n diverge to
in�nity. Also, a is constant so

(
a− b2n

)
must converge to zero, which means:

lim
n→∞

b2n = a

{an} and {bn} Converge to
√
a

Since limn→∞ a2n = limn→∞ b2n = a, we have shown that the squares of both sequences converge to
a, and thus each sequence must converge to

√
a.
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1.6 Alternate Proof that limn→∞ an = limn→∞ bn =
√
a

Since {an} is a Cauchy sequence, ∀ ε > 0, ∃N ∈ N such that ∀n,m > N, |an − am| < 1
2ε. The

sequence {an} is monotone decreasing so if m > n, am < an and therefore |an − am| = an − am.
Thus:

1

2
ε > an − an+1

1

2
ε > an −

an + bn
2

1

4
ε2 >

(
an − bn

2

)2

1

4
ε2 >

a2n − 2anbn + b2n
4

ε2 > a2n − 2a+ b2n

ε2 > (an − bn)2

ε > an − bn
lim
n→∞

an = lim
n→∞

bn

Since limn→∞ an = limn→∞ bn, and anbn = a,

lim
n→∞

a2n = lim
n→∞

b2n = lim
n→∞

anbn = a

lim
n→∞

an = lim
n→∞

bn =
√
a
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2 Newton's Method1

Newton's method for �nding the square root of a is to begin by making an initial guess b1 such that
1 ≤ b1 ≤ a. Ideally, b1 will be the integer nearest a, but initial proximity only reduces the number
of iterations necessary to achieve the desired accuracy. Dividing a by b1 and averaging the quotient
with bn will result in a better approximation for

√
a. This is repeated until the desired accuracy is

achieved. To state the algorithm as a recursive sequence,

bn+1 =
bn + a

bn

2

To prove that the algorithm works, it shall �rst be shown that it works for the trivial case where
the initial guess, b1, is equal to

√
a. Then a full proof for any value of b1 such that 1 ≤ b1 ≤

√
a

shall be provided.

2.1 b1 =
√
a

Since the algorithm allows any initial guess between one and a, it is possible that b1is equal to the
square root of a. In this trivial case, each term of the sequence is identically

√
a as shown by starting

with bk =
√
a:

bk+1 =
bk +

a
bk

2
=

√
a+ a√

a

2
=

√
a+
√
a

2
=
√
a

Since b1 =
√
a, bn =

√
a ∀n ∈ N by induction. Incidentally, this is the only case where any terms

of the sequence will equal
√
a.

2.2 The Tail of {bn} is Bounded Below

For most initial guesses, b1 will not be equal to
√
a and it must be shown that {bn} converges to√

a. In this case we can let δn =
√
a− bn. For any bn, we have:

δn ≥ 0

δ2n ≥ 0

δ2n + 2a− 2
√
a ≥ 2a− 2

√
aδn

a− 2
√
a+ δ2n + a ≥ 2

√
a
(√
a− δn

)(√
a− δn

)2
+ a ≥ 2

√
a
(√
a− δn

)
(
√
a− δn)

2
+ a√

a− δn
≥ 2

√
a

√
a− δn +

a√
a− δn

≥ 2
√
a

√
a− δn + a√

a−δn
2

≥
√
a

bn + a
bn

2
≥
√
a

bn+1 ≥
√
a

1Also known as the Babylonian method or Heron's method
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Thus if we ignore the �rst term, the tail of the sequence is bounded below by
√
a. From this a

bn

must be bounded above by
√
a for all n > 1.

bn ≥
√
a

bn
√
a ≥ a
√
a ≥ a

bn

2.3 The Tail of {bn} is Monotone Decreasing

Next, it shall be shown that this tail is decreasing. Since bn ≥
√
a ≥ a

bn
∀n > 1,

bn ≥ a

bn

2bn ≥ bn +
a

bn

bn ≥
bn + a

bn

2
bn ≥ bn+1

2.4 {bn} Converges to
√
a

Since the tail of {bn} is bounded below and monotone decreasing, it is a Cauchy sequence and
∀ ε > 0, ∃ N ∈ N such that ∀n,m > N, |bn − bm| < 1

2aε. Also, if m > n, then bm < bn and
therefore |bn − bm| = bn − bm. Finally, an/bn ≥ 1 ∀n, so:

1

2a
ε ≥ bn − bn+1

1

2a
ε ≥ 2bn

2
−
bn + a

bn

2

1

2a
ε ≥

bn − a
bn

2

ε ≥ a

(
bn −

a

bn

)
ε ≥ a

bn

(
b2n − a

)
≥ b2n − a

ε ≥ b2n − a

lim
n→∞

b2n = a

lim
n→∞

bn =
√
a

{bn} →
√
a
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3 Bahkshali Method

The Bahkshali formula was originally written to give the approximate square root as a single ex-
pression, although iteration is possible. As originally presented,

√
a =

√
b2 + d ≈ b+ d

2b
− (d/2b)

2

2
(
b+ d

2b

)
To �nd

√
a, one must �rst guess at b and then determine d by the relation d = a − b2. The

approximate square root is then given by the formula. The result from the approximation can be
used as b for a subsequent iteration.

3.1 Sequential Form

To iterate for a more accurate solution, a sequence can be de�ned as:

dn = a− b2n

bn+1 = bn +
dn
2bn
−

(
dn
2bn

)2
2
(
bn + dn

2bn

)
Rewriting the sequence in terms of only a and bn, we have:

bn+1 = bn +
dn
2bn
−

(
dn
2bn

)2
2
(
bn + dn

2bn

)
= bn +

dn
2bn
− d2n

8b3n + 4bndn

= bn +
a− b2n
2bn

−
(
a− b2n

)2
8b3n + 4bn (a− b2n)

= bn +
a− b2n
2bn

− a2 − 2ab2n + b4n
4b3n + 4abn

= bn +
a− b2n
2bn

− a2 − 2ab2n + b4n
4bn (b2n + a)

=
4b2n

(
b2n + a

)
+ 2

(
a− b2n

) (
b2n + a

)
−
(
a− b2n

)2
4b3n + 4abn

=
a2 + 6ab2n + b4n
4b3n + 4abn

This form of the equation might not be as elegant, but being in standard form makes it simpler to
�nd an equivalent expression.
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3.2 Newton's Method Revisited

bn+2 =
bn+1 + a/bn+1

2
=

bn+a/bn
2 + a

bn+a/bn
2

2

=
bn + a/bn + 4a

bn+a/bn

4

=
bn
4

+
a

4bn
+

abn
b2n + a

=
b2n
(
b2n + a

)
+ a

(
b2n + a

)
+ 4ab2n

4bn (b2n + a)

bn+2 =
a2 + 6ab2n + b4n
4b3n + 4abn

The unexpected result shown here is that the Bahkshali formula is equivalent to two iterations
of Newton's method. As it has been shown that Newton's method converges to the square root, it
is clear that the Bahkshali method will also converge.

3.3 E�ciency

The similarity to Newton's method makes this an ine�ective algorigthm for computers, which can
perform simple operations very quickly. A single iteration of the Bahkshali method requires a larger
stack and more operations than two iterations of Newton's method, which is algebraically identical.

The functionality of the formula is in the repetition of the terms d
2b and b + d

2b . This makes
it convenient for hand calculations, where this repetition can save a substantial amount of time.
Provided a reasonable �rst guess, the Bahkshali formula provides a very accurate approximation, as
shown in the following table. For creating the chart, b was taken as the �oor function of the square
root.

10 20 30 40 50
a0.980

0.985

0.990

0.995

1.000
Accuracy
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4 High School Method2

The High School method is a procedural algorithm for computing square roots, a digit-by-digit
computation that ensures each digit is accurate as it is calculated. It also terminates when the exact
square root has been found. (Of course this only occurs when the root is a rational number with a
�nite decimal expansion.)

4.1 Procedure

1. Divide the number, a, into pairs of digits, positioned to keep the decimal point between pairs.

2. The �rst digit, d1, of the root, b, is the largest integer whose square is less than the �rst pair
of digits. (The �rst �pair � may only be one digit.)

3. Square the �rst digit and write it below the �rst pair of digits, then subtract.

4. Bring down the next pair of digits to complete the di�erence, similar to long division.

5. The next digit, d2, of the root is the largest integer such that d2 (20d1 + d2) is less than or
equal to the completed di�erence.

6. Subtract the product from step 5 from the di�erence, then bring down the next pair. Zeroes
can be appended to the end to form pairs, exactly as for long division.

7. The next digit is the largest integer such that d3 (200d1 + 20d2 + d3) is less than or equal to
the di�erence from the previous step with the appended digits. Note that 200d1 + 20d2 + d3
is twice (d1d2) with d3 appended.

8. This continues until the desired accuracy is reached or the di�erence is 0.

When the residue is zero and there are no more pairs of digits to bring down, the exact square
root has been found. This makes this procedure di�erent from the other methods discussed, which
approach the square root but never equal it.

Example

3 2. 4

1 0 4 9. 7 6
3 9

1 4 9
62 1 2 4

2 5 7 6
644 2 5 7 6

0

Note that in the example the values 20d1 + d2 and 200d1 + 20d2 + d3 are written down the left
margin to aid in keeping track.

It is clear from the method of construction that the sequence is monotone increasing, but showing
that this method of choosing digits results in a sequence whose supremum is the square root of a
isn't so clear. The algorithm is simply a tabular form for managing the terms of a nested binomial
expansion. When each digit is chosen, it is chosen so that the value calculated thus far is never
greater than the square root.

2Perhaps this is a misnomer, as it seem most high schools now teach the Babylonian divide and average method
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4.2 Binomial Expansion

The two digit decimal represented by d1d2is equal to 10d1 + d2, so its square equals:

′d1d
′2
2 = (10d1 + d2)

2

= 100d21 + 20d1d2 + d22

= 100d21 + (20d1 + d2) d2

Furthermore, the square of a three digit number, d1d2d3is equal to 100d1 + 10d2 + d3, so the
square equals

′d1d2d
′2
3 = (100d1 + 10d2 + d3)

2

= (10 (10d1 + d2) + d3)
2

= 100 (10d1 + d2)
2
+ 20 (10d1 + d2) d3 + d23

= 100 (10d1 + d2)
2
+ (200d1 + 20d2 + d3) d3

= 100′d1d
′2
2 + (20′d1d

′
2 + d3) + d3

The relationship between these expansions and the High School method is made more obvious
by the following example, where the digits have been replaced by variables.

d1 d2. d3
a1a2 a3a4. a5a6

d1 -d21
a1a2 − d21 a3a4

20d1 + d2 − (20d1 + d2) d2
. . .

200d1 + 20d2 + d3 − (20′d1d
′
2 + d3) d3

Looking at the extraction performed with variables, it is easy to see that for the second iteration
the two values subtracted sum to the binomial expansion of ′d1d

′2
2 . Note that instead of multiplying

the previous sum by 100, the new values are shifted over two decimal places. On the third iteration,
the sum of all terms subtracted is equal to ′d1d2d

′2
3 . The tabular arrangement aligns the values with

respect to the decimal place, and the procedure subtracts the additional terms of the expansion in
succession. Having demonstrated how the procedure works, it is now time for a more rigorous proof.

4.3 Proof of the Method

First we need to account for the magnitude of a. Let k = blog100 ac+1, i.e. k is such that 100k−1 ≤
a < 100k. Furthermore, k will be the number of digits in the integer portion of the square root as k
is also the number of pairs of digits to the left of the decimal point

Accounting for the position of the decimal place, d1 actually represents
′d′1×10k−1, d2represents

′d′2 × 10k−2, and so on. For clarity, the digit ′d′i in single quotes will represent the single digit and
the variable di will represent

′d′i × 10k−i

Let {bn}be de�ned as bn =
∑n
i=1 di. Obviously {bn} is an increasing function, and it shall be

shown that it converges to
√
a.

The procedure for �nding the �rst digit of the root is equivalent to choosing ′d′1such that d21 ≤
a <

(
d1 + 10k−1

)2
. The second inequality ensures that if a higher digit would work, that should be

d1. The next step, subtracting the square of
′d′1 from the �rst pair of digits is identical to subtracting

d21 from a. The �rst digits of a − d21 will be the same as the remainder term with the next pair of
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digits brought down in the algorithm. In the tabular form, the zeroes are excluded and digits are
only brought down as necessary.

The next ′d′n is chosen as high as possible so that the product of the new digit and the sum of
20 times the digits already found plus the new digit is less than what is left from the subtraction.
This can be expressed as:

dn × (2bn−1 + dn) ≤ a− b2n−1 <
(
dn + 10k−n

)
×
(
2bn−1 +

(
dn + 10k−n

))
The di�erence between bn−1 and bn is dn, so we can take:

bn − bn−1 = dn

bn = dn + bn−1

b2n = d2n + 2dnbn−1 + b2n−1

b2n − 2bn−1dn − d2n = b2n−1

Substituting this into our inequality,

dn × (2bn−1 + dn) ≤ a− b2n−1
2bn−1dn + d2n ≤ a− b2n + 2bn−1dn + d2n

b2n ≤ a

bn ≤
√
a

So ′d′n is chosen so that bn ≤
√
a and therefore bounded above. If we focus on the other side of

the inequality (the strict inequality), we get:

a− b2n−1 <
(
dn + 10k−n

)
×
(
2bn−1 +

(
dn + 10k−n

))
a− b2n−1 < 2bn−1

(
dn + 10k−n

)
+
(
dn + 10k−n

)2
a− b2n−1 < 2bn−1dn + 2× 10k−nbn−1 + d2n + 2× 10k−ndn + 100k−n

a− b2n + 2bn−1dn + d2n < 2bn−1dn + 2× 10k−nbn−1 + d2n + 2× 10k−ndn + 100k−n

a− b2n < 2× 10k−nbn−1 + 2× 10k−ndn + 100k−n

a− b2n < 10k−n(2bn−1 + 2dn + 10k−n)

a− b2n < 10k−n(2bn + 10k−n)

{bn} is bounded above by
√
a, so for any ε > 0, ∃N ∈ N such that 10k−N < ε

2
√
a
, thus ∀n > N :

10k−N <
ε

2
√
a
≤ ε

2bn
<

ε

2bn + 10k−N

10k−N
(
2bn + 10k−N

)
< ε

a− b2n < ε

Since the limit of
{
b2n
}
is a, the limit of {bn} is

√
a and the procedure has been proven.
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