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1 Greek Method

a1 = a an+1 =
an + bn

2

b1 = 1 bn+1 =
2anbn
an + bn

{an} →
√
a

{bn} →
√
a

• First terms are 1 and
√
a

• Subsequent terms of {an} are the average of the previous a and b

• Subsequent terms of {an} are twice the product divided by the sum
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Method to Prove Convergence

1. Prove anbn = a ∀n ∈ N

2. Prove an < bn ∀n ∈ N

3. Prove an is strictly decreasing

4. Prove bn is strictly increasing

5. Prove limn→∞ a
2
n = limn→∞ b

2
n = a
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1.1 Product of Terms

Base Case

n = 1:

a1b1 = a× 1 = a

Induction Step

Assume akbk = a, then

ak+1bk+1 =

(
ak + bk

2

)(
2akbk
ak + bk

)
= akbk = a
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1.2 {an} > {bn}
• ∀n ∈ N, an ≥ bn

Base Case for Induction

n = 1:

a1 = a > b1 = 1

Induction Step

Assume ak > bk, then

(ak − bk)2 > 0

a2k − 2akbk + b2k > 0
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a2k − 2akbk + b2k > 0

a2k + 2akbk + b2k > 4akbk

(ak + bk)
2 > 4abk

ak + bk
2

>
2akbk
ak + bk

ak+1 > bk+1

• By induction, {an} > {bn}
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1.3 {an} is Strictly Decreasing

• Since an > bn ∀n ∈ N:

an > bn

2an > an + bn

an >
an + bn

2

an > an+1
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1.4 {bn} is Strictly Increasing

• Since an > bn ∀n ∈ N:

bn < an

b2n < anbn

anbn + b2n < 2anbn

bn (an + bn) < 2anbn

bn <
2anbn
an + bn

bn < bn+1
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1.5 The Sequences {an} and {bn} Converge to
√
a

• ∀ ε > 0, ∃, N1 ∈ N s.t. ∀n,m > N1, |an − am| < 1
2
ε

• m > n ⇒ am < an ⇒ |an − am| = an − am

1

2
ε > an − an+1

1

2
ε > an −

an + bn
2

1

4
ε2 >

(
an − bn

2

)2

1

4
ε2 >

a2n − 2anbn + b2n
4

ε2 > a2n − 2a+ b2n
ε2 > (an − bn)2

ε > an − bn
lim
n→∞

an = lim
n→∞

bn
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2 Newton's Method

1 ≤ b1 ≤ a

bn+1 =
bn + a/bn

2

{bn} →
√
a

• First term is any guess between 1 and a

• Subsequent terms are the average of the prior term and a divided by the
prior term

• Also known as the Babylonian Method or Heron's Method
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2.1 b1 =
√
a

• For the trivial case where b1 =
√
a, the entire sequence is identically

√
a

as shown by this induction step:

Assume bk =
√
a

bk+1 =
bk + a/bk

2
=

√
a+ a/√a

2
=

√
a+
√
a

2
=
√
a
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2.2 The Tail of {bn} is Bounded Below

• Let δn = |
√
a− bn|. Then for any bn, we have:

δn ≥ 0

δ2n ≥ 0

δ2n + 2a− 2
√
aδ ≥ 2a− 2

√
aδn

a− 2
√
aδ + δ2n + a ≥ 2

√
a
(√

a− δn
)(√

a− δn
)2

+ a ≥ 2
√
a
(√

a− δn
)

√
a− δn + a√

a−δn

2
≥
√
a

bn + a/bn

2
≥
√
a

bn+1 ≥
√
a

• The tail of the sequence is bounded below by
√
a
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2.3 The Tail of {bn} is Monotone Decreasing

• Since bn ≥
√
a ∀n > 1,

bn ≥
√
a

bn
√
a ≥ a
√
a ≥ a

bn

∴ bn ≥
a

bn
∀n > 1

2bn ≥ bn +
a

bn

bn ≥
bn + a/bn

2
bn ≥ bn+1 ∀n > 1

• Thus the tail of the sequence is monotone decreasing.
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2.4 {bn} Converges to
√
a

• ∀ ε > 0, ∃, N ∈ N s.t. ∀n,m > N, |bn − bm| < 1
2a
ε.

• m > n⇒ bm ≤ bn ⇒ |bn − bm| = bn − bm.

1

2a
ε > bn − bn+1

1

2a
ε >

2bn
2
− bn + a/bn

2
1

2a
ε >

a/bn − bn
2

ε >
a

bn

(
a− b2n

)
≥ a− b2n

ε > a− b2n
lim
n→∞

b2n = a

lim
n→∞

bn =
√
a
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3 Bahkshali Method

√
a =
√
b2 + d ≈ b+

d

2b
− (d/2b)2

2
(
b+ d

2b

)
• To �nd

√
a, one must �rst guess at b and then determine d by the relation

d = a− b2

• The approximate square root is then given by the formula

• To iterate for a more accurate solution, a sequence can be de�ned as:

dn = a− b2n

bn+1 = bn +
dn
2bn
−

(
dn
2bn

)2
2
(
bn +

dn
2bn

)
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Rewriting the Sequence

bn+1 = bn +
dn
2bn
−

(
dn
2bn

)2
2
(
bn +

dn
2bn

)
= bn +

dn
2bn
− d2n

8b3n + 4bndn

= bn +
a− b2n
2bn

− (a− b2n)
2

8b3n + 4bn (a− b2n)

= bn +
a− b2n
2bn

− a2 − 2ab2n + b4n
4b3n + 4abn

= bn +
a− b2n
2bn

− a2 − 2ab2n + b4n
4bn (b2n + a)

=
4b2n (b

2
n + a) + 2 (a− b2n) (b2n + a)− (a− b2n)

2

4b3n + 4abn

bn+1 =
a2 + 6ab2n + b4n
4b3n + 4abn
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Newton's Method Revisited

bn+2 =
bn+1 + a/bn+1

2
=

bn+a/bn
2

+ a
bn+a/bn

2

2

bn+2 =
bn + a/bn + 4a

bn+a/bn

4

=
bn
4

+
a

4bn
+

abn
b2n + a

=
b2n (b

2
n + a) + a (b2n + a) + 4ab2n

4bn (b2n + a)

bn+2 =
a2 + 6ab2n + b4n
4b3n + 4abn

• The Bahkshali formula is simply two iterations of Newton's method
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E�ciency

10 20 30 40 50
a0.980

0.985

0.990

0.995

1.000
Accuracy

b =
⌊√

a
⌋
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E�ciency

400 600 800 1000
a

0.90

0.95

1.00
Accuracy

b =
√
a− 10
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4 High School Method

• Starting at decimal point, digits are split into pairs

• First digit of root is the largest integer whose square is less than the �rst
pair of digits

3 2. 4
10 49. 76

3 9
1 49

62 1 24
25 76

644 25 76
0
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4.1 Procedure

1. Divide the number, a, into pairs of digits, positioned to keep the decimal
point between pairs.

2. The �rst digit, d1, of the root, b, is the largest integer whose square is
less than the �rst pair of digits.

3. Square the �rst digit and write it below the �rst pair of digits, then
subtract.

4. Bring down the next pair of digits to complete the di�erence, similar to
long division.

5. The each subsequent digit, di, of the root is the largest integer such that
di
(
20′d1d2 . . . d

′
i−1 + d2

)
is less than or equal to the remaininder.

6. Subtract the product from step 5 from the di�erence, then bring down
the next pair. Zeroes can be appended to the end as in long division.

7. Continue until the desired accuracy is reached or the di�erence is 0.
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4.2 Binomial Expansion

'd1d
′2
2 = (10d1 + d2)

2

= 100d21 + 20d1d2 + d22
= 100d21 + (20d1 + d2) d2

′d1d2d
′2
3 = (100d1 + 10d2 + d3)

2

= (10 (10d1 + d2) + d3)
2

= 100 (10d1 + d2)
2 + 20 (10d1 + d2) d3 + d23

= 100 (10d1 + d2)
2 + (200d1 + 20d2 + d3) d3

= 100′d1d
′2
2 + (20′d1d

′
2 + d3) + d3
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Binomial Expansion

′d1d2d3d
′2
4 = (1000d1 + 100d2 + 10d3 + d4)

2

= (10 (100d1 + 10d2 + d3) + d2)
2

= 100 (100d1 + 10d2 + d3)
2 + 20 (100d1 + 10d2 + d3) d4 + d24

= 100 (100d1 + 10d2 + d3)
2 + (2000d1 + 200d2 + 20d3 + d4) d4

= 100′d1d2d
′2
3 + (20′d1d2d

′
3 + d4) + d4

• The total of the terms subtracted is equal to the square of the digits

d1 d2. d3
a1a2 a3a4. a5a6

d1 -d21
a1a2 − d21 a3a4

20d1 + d2 − (20d1 + d2) d2
. . .

200d1 + 20d2 + d3 − (200d1 + 20d2 + d3) d3
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4.3 Some Nomenclature

• k = blog100 ac+1, i.e. k is such that 100k−1 ≤ a < 100k.

• ′d′i in single quotes will represent the digit and the variable di will rep-
resent ′d′i × 10k−i

• bn =
∑n

i=1 di. For example, if k = 3, b3 = d1 + d2 + d3 =
′ d1d2d

′
3

• bnis increasing

• Need to show why bnis bounded above by
√
a.
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4.4 Proof

• First Digit: ′d′1
d21 ≤ a <

(
d1 + 10k−1

)2
• The second inequality ensures that if a higher digit would work, that
should be ′d′1.

• Subtracting the square of ′d′1 from the �rst pair of digits is identical to
subtracting d21 from a.

• The �rst digits of a − d21 will be the same as the remainder term with
the next pair of digits brought down in the algorithm.

• In the tabular form, the zeroes are excluded and digits are only brought
down as necessary.
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Proof

• The next ′d′n is chosen as high as possible so that the product of the new
digit and the sum of 20 times the digits already found plus the new digit
is less than what is left from the subtraction.

dn × (2bn−1 + dn) ≤ a− b2n−1 <
(
dn + 10k−n

)
×
(
2bn−1 +

(
dn + 10k−n

))
• The di�erence between bn−1 and bn is dn, so we can take:

bn − bn−1 = dn

bn = dn + bn−1

b2n = d2n + 2dnbn−1 + b2n−1
b2n − 2bn−1dn − d2n = b2n−1
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Proof

• Substituting this into our inequality,

dn × (2bn−1 + dn) ≤ a− b2n−1
2bn−1dn + d2n ≤ a− b2n + 2bn−1dn + d2n

b2n ≤ a

bn ≤
√
a

• So ′d′n is chosen so that bn ≤
√
a and therefore bounded above. If we

focus on the other side of the inequality (the strict inequality), we get:

a− b2n−1 <
(
dn + 10k−n

)
×
(
2bn−1 +

(
dn + 10k−n

))
a− b2n−1 < 2bn−1

(
dn + 10k−n

)
+
(
dn + 10k−n

)2
a− b2n−1 < 2bn−1dn + 2× 10k−nbn−1 + d2n + 2× 10k−ndn + 100k−n

a− b2n + 2bn−1dn + d2n < 2bn−1dn + 2× 10k−nbn−1 + d2n + 2× 10k−ndn + 100k−n

a− b2n < 2× 10k−nbn−1 + 2× 10k−ndn + 100k−n

a− b2n < 10k−n(2bn−1 + 2dn + 10k−n)

a− b2n < 10k−n(2bn + 10k−n)
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Proof

{bn} is bounded above by
√
a, so for any ε > 0, ∃N ∈ N such that 10k−N <

ε
2
√
a
, thus ∀n > N :

10k−N <
ε

2
√
a
≤ ε

2bn
<

ε

2bn + 10k−N

10k−N
(
2bn + 10k−N

)
< ε

a− b2n < ε

lim
n→∞

b2n = a

lim
n→∞

bn =
√
a
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4.5 Example 2

• For a second example,
√
1574.5024:

3 9. 6 8
1 5 7 4.5 0 2 4

3 - 9 0 0.
6 7 4.5 0 2 4

69 - 6 2 1.
5 3.5 0 2 4

786 - 4 7.1 6
6.3 4 2 4

7928 - 6.3 4 2 4
0.0 0 0 0

For this example, the full expansions were used to demonstrate the equiv-
alence between correctly placing the values under the pairs of digits and ac-

counting for the
(
10k−N

)2
terms in the binomial expansion.



4 HIGH SCHOOL METHOD 30

Algorithms for Square Root Extraction

By Patrick Johnson

For MATH 312H - Real Analysis

PCJohnson@psu.edu
http://www.personal.psu.edu/pcj5004/312H/Sqrt/

April 26, 2010

mailto:PCJohnson@psu.edu
http://www.personal.psu.edu/pcj5004/312H/Sqrt/

	1 Greek Method
	2 Newton's Method
	3 Bahkshali Method
	4 High School Method

